

Venue

Student Number

Research School of Economics EXAMINATION

Semester 2, 2023 — Deferred exam

ECON2125/ECON6012_Semester 2 Optimisation for Economics and Financial Economics

This paper is for ANU and ANU students.

Examination Duration:	180 minutes				
Reading Time:	15 minutes				
Exam Conditions:					
(No electronic aids are permitted e.g. laptops, phones)					
Materials Permitted In The Exam Venue:	Calculator (non programmable)				
Materials To Be Supplied To Students:	1 x 20 page				
Instructions To Students:	See next page				

INSTRUCTIONS TO STUDENTS

- Read the questions carefully.
- Questions are worth different amount of marks given in parenthesis. Sub-questions in each questions are of equal value.
- To maximize your marks, explain all the steps in your arguments.
- If any part of the question seems missing or ambiguous, state clearly the way you interpret it, and carry of with your answer.
- In solving the questions, you can use any fact from the lecture materials without proof, unless specifically asked to give details. In either case, you should clearly state the relevant fact.
- You do not need to do the questions in order, as long as you clearly mark in your answer sheets which question you are addressing.

QUESTIONS

Question 1. (10 marks)

Consider function $f: [a, b] \to \mathbb{R}$ defined by $f(x) = -\frac{1}{x}e^x$. Find the minimizer(s) and the maximizer(s) of this function on D = [0, 3]. Explain your reasoning.

Question 2. (10 marks)

Find trace and determinant of the following matrix for each $\lambda \in \{-1, 0, 1\}$. Which values of λ make the matrix singular (non-invertible)?

$$\left(\begin{array}{rrrr} 1, & 0, & 1 \\ 1, & 2, & 3 \\ 0, & 1, & \lambda \end{array}\right)$$

Question 3. (10 marks)

Find an example of a nonlinear function $f: D \subset \mathbb{R} \to \mathbb{R}$ that has has exactly two minimizers and no maximizer. Remember to define both the function and its domain. Explain why the function has this property.

Question 4. (10 marks)

Let $g \colon \mathbb{R}^N \to \mathbb{R}$ be defined by $g(x) = -\|x\|$.

- Is *g* a bijection? Explain.
- Is *g* a concave? If yes, strictly or weakly? Explain.

Question 5. (10 marks)

Consider a correspondence $\gamma \colon \mathbb{R} \to 2^{\mathbb{R}}$ given by

$$\gamma(x) = \left\{ y \in \mathbb{R} \colon |x| \le \sqrt{|y|} \right\}$$

Make a sketch of the graph of correspondence γ . Is γ continuous? Explain.

Question 6. (10 marks)

For a function $f : \mathbb{R}^2 \ni (x, y) \mapsto 2x^2 + y^4 - 2xy \in \mathbb{R}$ find the stationary points and determine whether they are local maxima or minima.

Question 7. (20 marks)

An infinite horizon deterministic wealth draw-down problem is given by the following Bellman equation

$$V(m) = \max_{c \in [0,m]} \{ u(c) + \beta V((m-c)(1+r)) \},\$$

where $m \in [0, M] \subset \mathbb{R}$ denotes the current level of wealth, *c* is consumption, $r \in (0, 1)$ is the interest rate, and $\beta \in (0, 1)$ is the discount factor. Assume that *M* is a finite upper bound. Let $u(\cdot)$ denote a strictly concave continuous utility function.

Assuming that the optimal consumption choice function $c^*(m)$ is differentiable, show that away from the corner solutions it is characterized by

$$u'(c^{*}(m)) = \beta(1+r)u'(c^{*}([m-c^{*}(m)](1+r))).$$

Find the values of the parameters of the problem which yield optimal consumption to be constant over time, i.e. perfect consumption smoothing.

Question 8. (20 marks)

Find local minimizers and maximizers of the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = x^2 + y^2$ on the set

$$D = \{(x, y) \colon (1 - x)^3 \ge y^2 \text{ and } |y| - 1 \le 1\}.$$

Use first and second order conditions to support your answer.

END OF EXAMINATION