Comments on Exam Questions

Mainly small proofs/arguments requiring only a few steps of logic

In general, good answers will

- include relevant definitions
- use relevant facts from slides
- avoid long and difficult calculations there's probably an easier way

Use of external theorems is discouraged

- You won't need them
- Don't tell me it's true because you saw it in a book

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の < ④ 4/37

Sample question, worth five marks:

Q: Let ${\bf A}$ be any matrix. Show that the symmetric matrix ${\bf A}'{\bf A}$ is nonnegative definite

What is a good answer to this question?

A1 I love Kung Fu

- Mark: 0/5
- Why: Irrelevant

A2 $N \times N$ symmetric matrix **B** is nonnegative definite if $\mathbf{x}'\mathbf{B}\mathbf{x} \ge 0$ for any $N \times 1$ vector \mathbf{x} . I don't know the rest.

- Mark: 2/5
- Why: Gave the relevant definition

A3 $N \times N$ symmetric matrix **B** is nonnegative definite if $\mathbf{x}'\mathbf{B}\mathbf{x} \ge 0$ for any $N \times 1$ vector \mathbf{x} . Strictly concave functions have unique minima. A set is a collection of objects. Sharks continue to swim while sleeping.

- Mark: 1/5
- Why: One relevant definition cancelled out by other noise

A4. By definition, an $N \times N$ symmetric matrix ${\bf B}$ is nonnegative definite if

$$\mathbf{x}'\mathbf{B}\mathbf{x} \ge 0$$
 for any $N \times 1$ vector \mathbf{x} (*)

Let $B:=\mathbf{A}'\mathbf{A}$ and fix any such x. By the rules of transposes we have

$$\mathbf{x}'\mathbf{B}\mathbf{x} = \mathbf{x}'\mathbf{A}'\mathbf{A}\mathbf{x} = (\mathbf{A}\mathbf{x})'(\mathbf{A}\mathbf{x}) \ge 0$$

Here last equality holds because, for any vector \mathbf{y} ,

$$\mathbf{y'y} = \sum_{n=1}^N y_n^2 \ge 0$$

This confirms (*)

- Mark: 5/5
- Why: Correct and crystal clear