

/enue					
Student Number					

Research School of Economics EXAMINATION

Semester 1 - In-Class & Online, 2024

ECON2125/ECON6012_Semester 2 Optimisation for Economics and Financial Economics

This paper is for ANU and ANU students.

Examination Duration: 60 minutes
Reading Time: 15 minutes

Exam Conditions:

(No electronic aids are permitted e.g. laptops, phones)

Materials Permitted In The Exam Venue: No materials permitted

Materials To Be Supplied To Students: 1 x 20 page **Instructions To Students:** See next page

INSTRUCTIONS TO STUDENTS

- Read the questions carefully.
- Questions are worth different amount of marks given in parenthesis. Sub-questions in each questions are of equal value.
- To maximize your marks, explain all the steps in your arguments.
- If any part of the question seems missing or ambiguous, state clearly the way you interpret it, and carry on with your answer.
- In solving the questions, you can use any fact from the lecture materials without proof, unless specifically asked to give details. In either case, you should clearly state the relevant fact.
- You do not need to do the questions in order, as long as you clearly mark in your answer sheets which question you are addressing.

QUESTIONS

Question 1. (10 marks)

Find an example of a nonlinear function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ that has has neither a maximizer nor a minimizer on D. Remember to define both the function and its domain. Explain why the function has this property.

Question 2. (10 marks)

Make a sketch of the graph of correspondence $\gamma\colon \mathbb{R} \to 2^\mathbb{R}$ given by

$$\gamma(x) = \left\{ y \in \mathbb{R} \colon |y| \le \sqrt{|x|} \right\}$$

Question 3. (20 marks)

Characterize the set of maximizers of the following function on its domain.

$$f: \mathbb{R}^2 \ni (x, y) \mapsto e - \frac{e^{x^2 + y^2}}{x^2 + y^2} \in \mathbb{R}$$

Question 4. (20 marks)

Find the gradient of the composite function $h = f \circ g$ using the chain rule. Then compute its stationary points, i.e. the points where the gradient is equal to the null vector.

$$f: \mathbb{R}^2 \ni (x,y) \mapsto x^5 - 5x^3 - 15x^2y + 5y^3 \in \mathbb{R}$$
$$g: \mathbb{R}^2 \ni (x,y) \mapsto \begin{pmatrix} \ln(x) \\ \ln(-y) \end{pmatrix} \in \mathbb{R}^2$$

END OF EXAMINATION